
G. Bebis et al. (Eds.): ISVC 2008, Part II, LNCS 5359, pp. 440–449, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Comparison Study on Two Multi-scale Shape  
Matching Schemes 

Bo Li and Henry Johan 

School of Computer Engineering, Nanyang Technological University  
Block N4, Nanyang Avenue, 639798, Singapore 
{libo0002,henryjohan}@ntu.edu.sg 

Abstract. We present and compare two multi-scale shape matching schemes: 
Chi-square distance based scheme and pyramid matching mode based scheme. 
We define a shape as a set of points. Multi-scale shape matching includes two 
steps: multi-scale feature extraction and point correspondence. We define a hy-
brid feature for every point by combining a global multi-scale shape context 
feature and a local variation feature. The two schemes have a difference in the 
computation of multi-scale shape context feature distance: the Chi-square dis-
tance based scheme directly sums up weighted Chi-square distances at different 
scales while the pyramid matching mode based scheme utilizes a multi-scale 
pyramid matching mode. Experimental results based on Frenkel and Kimia da-
tabases show that: (1) the pyramid matching mode based scheme can achieve 
robust and often better performance than the Chi-square distance based scheme; 
(2) the proposed two multi-scale schemes can achieve averagely better results 
than the single scale schemes. 

1   Introduction 

Shape matching is one of the key components for many computer vision and multi-
media content retrieval problems. It includes two steps: feature extraction and point 
correspondence computation. Shapes have many representations such as point sets, 
curves and regions [17]. In this paper, we concentrate on point sets. Generally, the 
representations of a shape are highly dependent on the scales. For example, a tree may 
be depicted as a combination of trunks, branches and leaves, or only some points in a 
picture when we choose different scales. Multi-scale analysis can be used to extract 
interesting structures of a shape. Considering these, our work is dedicated to finding 
effective shape matching schemes by adopting a multi-scale strategy. 

We propose two multi-scale shape matching schemes which are Chi-square dis-
tance based scheme and pyramid matching mode based scheme. We define a hybrid 
feature of a point as the combination of a global feature shape context [2] and a local 
variation feature [10, 14]. Another contribution of our work is that we present two 
novel schemes to compute the multi-scale shape context feature distance. The Chi-
square distance based scheme defines the multi-scale shape context feature distance 
by directly summing up weighted Chi-square feature distances at different scales. The 
pyramid matching mode based scheme utilizes a multi-scale pyramid matching mode 
to compute the distance. To compute the correspondences between two point sets, we 
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adopt fast marching method (FMM) [4] and Jonker’s linear assignment problem 
(LAP) method [8]. Experimental results based on Frenkel [4] and Kimia [2] databases 
show that the pyramid matching mode based scheme has a more robust and better 
performance than the Chi-square distance based scheme and the proposed two multi-
scale schemes can achieve averagely better results than the single scale schemes. 

The paper is organized as follows. We briefly discuss related work in Section 2. 
Section 3 introduces the shape context and local variation features. In Section 4, we 
describe our proposed two multi-scale shape matching schemes. We give in details 
the experiments and comparison of the two multi-scale shape matching schemes in 
Section 5. We conclude the work in Section 6. 

2   Related Work 

A survey on general shape matching is presented in [11]. An overview of shape 
matching techniques based on computer geometry is given in [17]. We focus on work 
closely related to the two important facets of our multi-scale shape matching schemes:  
shape features selection and multi-scale feature extraction.  

Selecting an appropriate feature is very important in shape matching. Shape fea-
tures can be classified into local and global features. Some commonly used features 
are shape context [2], local variation [10, 14], curvatures, tangent vectors, salient 
geometric features [6] and key points or corners [16]. A hybrid feature is a combina-
tion of two or more such shape features. Its main objective is to make the resulting 
hybrid feature has more properties and the components of the hybrid feature comple-
ment with each other. 

Multi-scale feature extraction means using different scales to characterize the same 
feature. It should be differentiated from multi-resolution feature extraction which 
usually adopts some multi-resolution analysis or representation tools such as wavelet 
transform [1, 3]. Among the multi-scale shape matching methods, pyramid matching 
has attracted more and more interests in recent years. Grauman and Darrell [7] pre-
sented a kernel-based pyramid matching algorithm and a scheme to compute similar-
ity between histograms. Lazebnik et. al [9] presented a spatial pyramid matching 
framework based on histogram analysis on sub-regions of an image. Maji et. al [12] 
verified that classification using intersection kernel support vector machine can be 
more efficient than the standard approaches after using the histogram intersection 
kernel. 

3   Global and Local Features 

Shape Context. The descriptor of shape context (2D) is first proposed by Belongie et. 
al [2] and it is a rich global feature descriptor that has been successfully used in vari-
ous application fields [2,4,5,13]. It divides a point’s surrounding area into several bins 
with uniformly increasing distances and angles in log-polar space. The shape context 
of a point Pi is defined by computing the percentages of other points that are located 
in each of its surrounding bins,  
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X is the total number of points. k and l are the distance and orientation bin index re-
spectively. In other words, a point’s shape context feature is actually a log-polar his-
togram which defines the relative distribution of other points. Different points in one 
shape have different shape context features and similar points in two similar shapes 
have similar shape context features. Paper [2] adopts the Chi-square distance to meas-
ure the difference between the shape context features of two points Pi and Pj. 
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hi and hj are the normalized shape context histograms of Pi and Pj. Cij is in the range 
of [0,1]. To achieve rotation invariance, the author proposed a relative frame-based 
shape context feature by adopting the local tangent vector at each point as the refer-
ence axis for angle computation. But the shape context feature using relative frame 
will also partially lose its ability of discrimination. For example, it is difficult to dis-
tinguish “6” between “9”. Therefore, we propose a hybrid feature combining the 
global shape context feature and the rotation invariant feature local variation. 

Local Variation. Local variation [10, 14] is a local feature using covariance analysis 
on a point’s local neighborhood. For a 2D shape, the covariance matrix has two ei-
genvalues λN and λT. The eigenvalue λN is to measure the extent of the neighboring 
points’ deviation to the normal direction and λT is to measure the variation of the 
neighboring points’ distribution in the tangent direction [14]. Ligang et. al. [10] de-
fined a local variation feature of point Pi as follows,  
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δ is the radius of the neighborhood. When the neighborhood is a convex, ε=1; when it 
is a concave, ε=-1. σ(Pi,δ)∈ [-1,1]. Local variation σ(Pi,δ) only depends on the relative 
distribution of its neighborhood, therefore it is a rotation invariant feature. The differ-
ence between the local variations of two points can be defined as follows. 

1 2( , ) ( , ) 2/i jijL P Pσ δ σ δ= − . (4) 

δ1 and δ2 are the radii of the neighborhoods of point Pi and point Pj respectively. Lij is 
also in the range of [0,1]. 

4   Multi-scale Shape Matching Schemes 

In this part, we present two multi-scale matching schemes. Assume that the two 
shapes I1 and I2 have m and n points respectively. Our matching algorithms adopt the 
following steps: first extract the features of the points and then find a metric to repre-
sent the distance of two points’ features and after that we get an m x n distance ma-
trix. Then the next thing to do is to find an optimal correspondence (or assignment) 
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method to make the total distance of all the points in the two shapes be minimal. In 
details, the steps of the two schemes are as follows.  

(1) Construct shape context feature scale-spaces H1 and H2 for the two shapes (See 
details in Section 4.1). 

(2) Compute multi-scale shape context distance matrix S (See details in Section 
4.2, Subsection Scheme 1 for the Chi-square distance based scheme and Subsection 
Scheme 2 for the pyramid matching mode based scheme). 

(3) Compute local variation distance matrix L (See details in Section 4.3 for both 
schemes). 

(4) Combine multi-scale shape context distance matrix S with local variation dis-
tance matrix L together by the feature weights computed based on their discrimination 
ability to formulate a hybrid multi-scale distance matrix F (See details in Section 4.4 
for both schemes). 

(5) Matching or correspondence using fast marching method (FMM) [4] or 
Jonker’s linear assignment problem (LAP) [8]. 

We can see that the two schemes only have a difference in the second step.  

4.1   Construction of Shape Context Feature Scale-Spaces 

Belongie et. al [2] and Frenkel et. al [4] both used a fixed type of shape context (5x12, 
5 distance bins and 12 orientation bins). This means that the numbers of distance and 
orientation bins remain unchanged during the process of matching. However, in these 
work the authors did not state the method of deciding their appropriate values. 
Through experiments, we found that the matching results are more or less different 
when using different numbers of the distance and orientation bins. It is because the 
result of analysis of a shape is highly dependent on the scale selected. To address this 
issue, we organize a shape context scale-space by dividing a point’s surrounding area 
into different numbers of distance bins Nr and orientation bins No (not fix to 5x12) 
during matching based on exponential division: Nr=No=2s, s is the scale. Assume that 
the scale s varies from the minimum scale smin to the maximum scale smax. For each 
scale we can compute shape context feature for every point using Equation (1) and 
then construct shape context feature scale-spaces H1 and H2 for the two shapes I1 (m 
points) and I2 (n points) as follows, 

1 min max 2 min max{ | ,1 }, { | ,1 }
s s
i jh s s s i m h s s s j nΗ = ≤ ≤ ≤ ≤         Η = ≤ ≤ ≤ ≤ . (5) 

s
ih and s

jh are the normalized shape context histograms of a point Pi in I1 and another 

point Qj in I2 at the scale s. 

4.2   Computation of Multi-scale Shape Context Distance Matrix  

Scheme 1 — Chi-square Distance Based Method. The steps are as follows.  
(1) Compute shape context feature distance matrix Cs (m x n) on each scale s (smin 

≤s≤ smax) based on the two feature scale-spaces H1 and H2. The shape context distance 
between a point Pi in I1 and another point Qj in I2 is as follows, 
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1≤i≤m, 1≤j≤n, Nr=No=2s and k, l are the distance and orientation bin index. 
(2) Weight the shape context distance matrices at different scales together to get 

the multi-scale shape context distance matrix S (m x n). 
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Scheme 2 — Pyramid Matching Mode Based Method. This scheme is triggered by 
the pyramid matching method proposed in [7]. The pyramid matching method first 
maps two feature sets to two multi-scale histogram pyramids based on a new kernel 
function. Then, it computes the intersections of two feature sets’ histograms on each 
level of the pyramids. Finally, it weights the difference between successive levels’ 
intersection together to get the similarity of the two feature sets. The kernel entitles us 
to transfer matching result from a lower level to an adjacent higher level. 

In fact, this pyramid matching method can be viewed as a multi-scale matching 
scheme too. We can utilize this framework to formulate another scheme to compute 
the shape context feature distance matrix and it is very different from Chi-square 
distance based scheme. However, we need to make some adjustments since there are 
two important differences between the pyramid matching method and our approach.  

The first key difference is that we do not need to construct histogram pyramids us-
ing the kernel function described in [7] since we can use the multi-scale shape context 
features directly after constructing feature scale-spaces (See Section 4.1). In fact, our 
multi-scale shape context features are organized based on the numbers of distance and 
orientation bins rather than the different sizes of histogram like [7].  

Second, we want to get the distance rather than the similarity of two shapes. There-
fore the definition of intersection of two shapes’ feature histograms in our algorithm 
is also different (See Equation (8)).The complete steps are as follows. 

(1) Compute the histogram intersection matrix Hs (m x n) for the two feature scale 
spaces. The histogram intersection between a point Pi in I1 and another point Pj in I2 
on the scale s is as follows,  

1 1
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i jij

k l
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= =
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1≤i≤m, 1≤j≤n, Nr=No=2s, smin ≤s≤ smax. k, l are the distance and orientation bin index. 
(2) Compute the difference between successive levels’ intersections. 

1
, min max1

s s s
N H H s s s

−
         += − ≤ ≤ . (9) 

(3) Combine the difference of each scale with a weight value related to the scale 
value to formulate the multi-scale shape context feature distance matrix S. 
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4.3   Computation of Local Variation Feature Distance Matrix   

The steps are as follows. 

(1) Compute the local variation feature arrays V1 and V2 for the two shapes. If 
choosing different values for neighborhood threshold δ, we can get different local 
variation feature σδ. Assume δ min and δ max are the minimum and maximum values for 
δ. First, compute each local variation feature value for each point using Equation (3). 
At certain scale the local variation feature has a local extreme [15] which represents a 
relatively apparent as well as our interesting local variation feature σi, 

max min max{ }i i
δ

δ
σ σ δ δ δ≤ ≤= . (11) 

Then, compute the local variation feature arrays V1 and V2 for the two shapes I1 (m 
points) and I2 (n points) as follows,  

{ |1 }, { |1 }1 2i jV i m V j nσ  σ  = ≤ ≤         = ≤ ≤ . (12) 

(2) Compute the local variation feature distance matrix L (m x n) using Equation 
(4) for V1 and V2. 

4.4   Formulation of Hybrid Multi-scale Feature Distance Matrix 

First, compute the weights wS and wL for the two features shape context and local 
variation respectively, 

,S L
S L

S L S L
w w

σ σ
σ σ σ σ

=         =
+ +

. (13) 

σS and σL are the standard deviations of the matrices S and L respectively. Usually the 
standard deviation of a feature is a measure of its dispersion property showing its 
differentiation ability. Therefore our above proposed automatic weight assignment 
method indicates giving an appropriate weight to a feature according to its differentia-
tion.  

Next, combine the shape context and local variation feature distance matrix using 
the weight values to formulate a hybrid multi-scale feature distance matrix F, 

S LF w S w L= ⋅ + ⋅ . (14) 

5   Experiments and Discussion 

In this part, we compare the two schemes’ matching performance and characteristics 
such as error rate and robustness based on the two databases in [2] and [4].    
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Fig. 1. 20-best matches example for Frenkel database using SC2           Fig. 2. Kimia database 

5.1   Frenkel Curves Database Matching 

Frenkel et. al [4] created a curves database comprising 110 curves, categorized into 11 
types, 10 each. The first 10 prototype curves are shown in the first column of Figure 
1. We use our presented two schemes to do a complete matching: each time select one 
prototype from the first 10 prototypes and match it with the whole curves database. 
One factor to be considered is the scales s (smin ≤s≤ smax). Larger s gets more accurate 
shape context feature, but needs more time. We choose three multi-scale combina-
tions: <smin=2, smax=3>, <smin=3, smax=4> and <smin=4, smax=5>. We denote the Chi-
square distance based scheme as SC1, and the pyramid matching mode based scheme 
as SC2. In order to compare the multi-scale and the single scale matching schemes, 
we use the single scale shape context (not 5x12 but 2sx2s) distance similar to [4] to 
replace the multi-scale shape context distance in the second step of the two schemes 
(Section 4.2). We denote this single scale scheme as SC_F. Figure 1 gives an example 
of the 20-best matching results of SC2 on the scales <smin=3, smax=4>. Table 1 shows 
the comparison of the three methods. R is the recognition rate.  

Table 1. 10-best matches results for the three methods 

      Methods  
Scales  

SC_F 
 (s)       (R) 

SC1 
(R) 

SC2 
(R) 

5 88% <smin=4, smax=5> 
4 95% 90% 92% 

<smin=3, smax=4> 3 94% 95% 94% 
<smin=2, smax=3> 2 93% 94% 94% 

First, as seen from Table 1, SC2 has more moderate fluctuations than SC1 over the 
three types of scale combinations. SC1 may have a disadvantage of instability. For 
instance, the recognition rate on the scales <smin=4, smax=5> is only 90%.  

Second, as shown in Table 1, one advantage of the multi-scale scheme SC2 over 
the single scale scheme SC_F is that its performance is not highly dependent on the 
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scale selection. This is because of its principle for computing the multi-scale fea-
tures. It is based on the difference between successive levels, not on the absolute 
feature values on each level. SC2 can achieve good results more easily than SC_F. 
As shown in Table 1, with only very coarse scales such as <smin=2, smax=3>, SC2 
already gets a result among the top best ones. But, for SC_F we find that finer scale 
(for example, s=5) does not mean more accurate result (only 88%). Therefore, it is 
more difficult to choose an appropriate scale to achieve better results for SC_F than 
for SC2. The average recognition rates for SC_F, SC1 and SC2 are 92.5%, 93% and 
93.3%. The two multi-scale schemes achieve better results than the single scheme 
averagely. 

In order to know whether the local variation feature really works as an important 
part of the hybrid feature, we also do comparison experiments for the two schemes 
with and without local variation feature. We denote the two schemes without local 
variation feature as SC1_S and SC2_S. The results are shown in Table 2.  

Table 2. 10-best matches results for the two schemes with and without local variation feature 

Methods
Scales SC1_S SC1 SC2_S SC2 

<smin=4, smax=5> 92% 90% 92% 92% 

<smin=3, smax=4> 94% 95% 94% 94% 

<smin=2, smax=3> 95% 94% 92% 94% 

We find that SC2 improves more than SC1 after adding the local variation feature. 
For example, SC2 improves the recognition rate by 2% after adding the local varia-
tion feature at the coarse scales <smin=2, smax=3>. On the contrary, SC1 deteriorates at 
a coarser (<smin=2, smax=3>) and finer scale (<smin=4, smax=5>) and only has an im-
provement of 1% on the middle scale (<smin=3, smax=4>).  

5.2   Kimia Database Matching 

Kimia Database [2] has 25 images and 6 categories (see Figure 2). We use the first 
column as the prototypes and do the experiment similar to Section 5.1. We can see 
rotation operation has been applied to some images of the database. Therefore, we 
need to adopt the relative shape context feature as described in Section 3.1. The selec-
tions of multi-scale combinations are the same as those in Section 5.1.We first extract 
the contour of each image and use cubic spline interpolation to represent the contour 
curve and then uniformly sample 100 points. We use Jonker’s LAP method as the 
corresponding algorithm. We also use the single scale shape context distance similar 
to [2] to replace the multi-scale shape context distance and denote this single scale 
scheme as SC_B. Table 3 shows the 3-best (exclude the prototype itself) matching 
results for the three schemes, and the three digits in the bracket means the number of 
images that are correctly classified into its belonging types for the 3-best matches 
respectively.  
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Table 3. 3-best matches results for Kimia database matching 

Methods
Scales  

SC_B
(s)      (n

1
, n

2
, n

3
)

SC1
(n

1
, n

2
, n

3
)

SC2
(n

1
, n

2
, n

3
)

<smin=4, smax=5>
5 (20,18,13)

(23,18,12) (25,17,18)4 (24,19,13)
<smin=3, smax=4> 3 (24,19,12) (24,18,14) (24,17,16)
<smin=2, smax=3> 2 (19,18,11) (24,18,14) (22,20,13)

 

Table 4. 3-best matches results for the two schemes with and without local variation feature 

    Methods
Scales SC1_S SC1 SC2_S SC2

<smin=4, smax=5> (23,20,12) (23,18,12) (24,19,12) (25,17,18)

<smin=3, smax=4> (22,19,10) (24,18,14) (23,19,10) (24,17,16)

<smin=2, smax=3> (22,17,11) (24,18,14) (22,17,12) (22,20,13)
 

Results indicate that SC2 outperforms SC1 and SC_B on the average and their av-
erage recognition rates (total number of correctly classified images/total number of 
matching) are 76.4%, 73.2% and 70.0% respectively. We can also conclude that the 
two multi-scale schemes achieve better results than the single scheme averagely. 

Then, we compare the performances of the two schemes with and without the local 
variation feature, as shown in Table 4. The average recognition rates of SC1_S and 
SC2_S are 69.3% and 70.2%. We also find SC2 has a more apparent improvement 
(6.2%) than SC1 (3.9%) does after adding a local variation feature.  

6   Conclusion 

The contributions of this paper are as follows. First, we define a hybrid feature which 
combines a global multi-scale shape context feature and a local variation feature for 
shape matching. Second, we provide two multi-scale shape matching schemes by 
adopting different multi-scale feature distance computing methods. The Chi-square 
distance based scheme computes the multi-scale shape context feature distance by 
directly summing up a point’s weighted Chi-square feature distances at different 
scales while the pyramid matching mode based scheme utilizes a multi-scale pyramid 
matching mode to implement this. Third, we do a comparison study on them based on 
two data sets and find that the pyramid matching mode based scheme can achieve a 
more robust and often better result than the Chi-square distance based scheme. In 
addition, the proposed two multi-scale schemes can achieve averagely better results 
than the single scale schemes. 
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